Sampling from multimodal distributions using tempered transitions

نویسنده

  • Radford M. Neal
چکیده

I present a new Markov chain sampling method appropriate for distributions with isolated modes. Like the recently-developed method of \simulated tempering", the \tempered transition" method uses a series of distributions that interpolate between the distribution of interest and a distribution for which sampling is easier. The new method has the advantage that it does not require approximate values for the normalizing constants of these distributions, which are needed for simulated tempering, and can be tedious to estimate. Simulated tempering performs a random walk along the series of distributions used. In contrast, the tempered transitions of the new method move systematically from the desired distribution, to the easily-sampled distribution, and back to the desired distribution. This systematic movement avoids the ineeciency of a random walk, an advantage that unfortunately is cancelled by an increase in the number of interpolating distributions required. Because of this, the sampling eeciency of the tempered transition method in simple problems is similar to that of simulated tempering. On more complex distributions, however, simulated tempering and tempered transitions may perform differently. Which is better depends on the ways in which the interpolating distributions are \deceptive".

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning tempered transitions

The method of tempered transitions was proposed by Neal (1996) for tackling the difficulties arising when using Markov chain Monte Carlo to sample from multimodal distributions. In common with methods such as simulated tempering and Metropolis-coupled MCMC, the key idea is to utilise a series of successively easier to sample distributions to improve movement around the state space. Tempered tra...

متن کامل

Dynamic Tempered Transitions for Exploring Multimodal Posterior Distributions

Multimodal, high-dimension posterior distributions are well known to cause mixing problems for standard Markov chain Monte Carlo (MCMC) procedures; unfortunately such functional forms readily occur in empirical political science. This is a particularly important problem in applied Bayesian work because inferences are made from finite intervals of the Markov chain path. To address this issue, we...

متن کامل

Learning in Markov Random Fields using Tempered Transitions

Markov random fields (MRF’s), or undirected graphical models, provide a powerful framework for modeling complex dependencies among random variables. Maximum likelihood learning in MRF’s is hard due to the presence of the global normalizing constant. In this paper we consider a class of stochastic approximation algorithms of the Robbins-Monro type that use Markov chain Monte Carlo to do approxim...

متن کامل

Partition Functions from Rao-Blackwellized Tempered Sampling

Partition functions of probability distributions are important quantities for model evaluation and comparisons. We present a new method to compute partition functions of complex and multimodal distributions. Such distributions are often sampled using simulated tempering, which augments the target space with an auxiliary inverse temperature variable. Our method exploits the multinomial probabili...

متن کامل

Estimating Ratios of Normalizing Constants Using Linked Importance Sampling

Abstract. Ratios of normalizing constants for two distributions are needed in both Bayesian statistics, where they are used to compare models, and in statistical physics, where they correspond to differences in free energy. Two approaches have long been used to estimate ratios of normalizing constants. The ‘simple importance sampling’ (SIS) or ‘free energy perturbation’ method uses a sample dra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1996